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SUMMARY 

In many applications, the relationship between the dependent variable and an independent regressor is non-linear in parameters. 
In such situations, we do not get optimum estimates of parameters in closed form and various non-linear optimization algorithms are 
used to obtain the optimum estimates. These algorithms are iterative in nature and need good initial estimates of parameters as seed 
values for a faster and global convergence. This paper proposes various methods based on finite differences to estimate the 
parameters of non-linear models belonging to the asymptotic regression category. Some published data sets are used to illustrate the 
application of the proposed methods. It has been demonstrated that the proposed methods produce efficient initial estimates for 
optimization algorithms. 
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1.  INTRODUCTION 
In biological, medical, agricultural and 

economic sciences, quite often the relationship 
between the response variable and an associated 
regressor tx is expressed as 

~
( , )t t ty g x     (1.1) 

where ~( , )tg x   is a smooth expectation or 

response function of tx and a parameter vector 

~
 and is assumed to be deterministic. We further 

assume that the model is exact. The mathematical 
form of ~( , )tg x   is assumed to be known. The 

quantity t  is the true additive error with E( t ) = 

0, for t = 1,…,n. Normally, we assume that 
Var( t ) = 2  for all t, but this assumption may 
be violated in some situations. For inference 
purposes, we also assume that t  is normally 
distributed. Given the pairs of observations 

),( tt yx , t = 1,…,n, we have to estimate ~ . The 
values of ’ix s are often equally spaced as they are 
under the researcher’s control. This means that 

)( 1 tt xx   is the same for all t. The examples of x 
include dose of fertilizers or drugs, amount of a 
particular chemical, the time at which 
measurement is taken, etc. The linearity or non-
linearity of model (1.1) depends on how the 
parameters occur in ~( , )g x   and not how the 
regressor x does. The response function 
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~( , )g x  may be a non-linear function in the 
variable, non-linear in parameters or non-linear 
in both. We do not consider the first case in the 
non-linear regression category. Only the last two 
cases fall in the category of non-linear regression. 
A simple test for non-linearity in parameters is 
that ~

~

( , )g x 




 is independent of every 

coordinate of ~ . For examples of models falling 
in the categories above, one may refer to 
Ratkowsky (1983). 

The models which are non-linear in 
parameters could be put into two categories,  
(1) intrinsically linear models and (2) 
intrinsically non-linear models. For the models in 
the first category the response function ~( , )tg x   
could be made linear in parameters by some 
suitable variable and parameter transformations. 
For example, for the model t

ctb
t eAty    an 

alternative model could be written as 
ttt ectbxz   where )(log tet yz  , )(log Ae  

and )log(txt  . The error te  is the true error of 
the transformed model and does not contain any 
information about the exogenous variables. 
However, it is different from t because the 
transformation of the model also transforms the 
error. But we still assume E( te ) = 0. However, 
the assumption of constant error variance and 
normality of error terms may no longer be valid. 
The models in second category cannot be made 
linear in parameters by any transformation. An 
important model in this category is a two 
compartment model given by t

tt BeAetC   )(  
which is used to study the pharmaceutical 
behaviour of a drug in the bodies of humans or 
animals. Here, C(t) is the concentration of drug in 
bloodstream at time t elapsed after drug 
administration. It is this category where the 
parameter estimation is a major problem. 

For the estimation of parameters of model 
(1.1), a commonly used approach is to minimize 
the sum of squares of errors (SSE) for a choice of 
parameters. The SSE is treated as a function of ~  
and is given by 

2 2
~~

1 1
( ) [ ( , )]

n n

t t t
t t

SSE y g x  
 

     (1.2) 

Analytically, by equating 
~

~

( )SSE 




to zero, 

we get normal equations which are solved for ~ . 

In case of linear models explicit solutions of 
these equations are available but in non-linear 
case it is not so. Therefore, one has to use 
iterative procedures like Fisher’s method of 
scoring or the Gauss-Newton method. These 
methods need initial guess values to start the 
iterations and require extensive computation. An 
alternative method is to use non-linear 
optimization algorithms of computation like 
Levenberg-Marquardt or the package ‘nls(stats)’ 
in R to minimize (1.2) directly. This also needs 
good initial estimates. 

The ( )SSE  at (1.2) is used as an objective 
function in algorithms but here we assume that 
V( t ) = 2 , for all t = 1,…, n. Quite often, the 
assumption of constant error variance is violated. 
There are instances where the variance of ty  
varies with tx . That is, Var( ty ) = 2)( txh . For 
some such instances, one may refer to Chatterjee 
(1991, p. 48), Draper and Smith (1981, p. 112) 
and West (1980). In such situations, we use 
weighted least-square theory and minimize 

2
~

1
( ) { ( , )}

n

W t t t
t

SSE w y g x 


   (1.3) 

where tw  are inversely proportional to the 
variances V( t )’s of error terms. Whether or not 
the variances vary could be ascertained by 
exploratory data analysis. The graph of y against 
x will reveal this. Alternatively, one may also use 
the plot of residuals of the assumed model 
against x-values for this purpose. If variance is 
not stable, as a rule of thumb, we use tw is 

proportional to 1
2
ty for t=1,2,…,n. In cases 

where it is known apriori that Var( t ) = 2)( txh , 

we take 
)(

1

t
t xh

w  . 
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In earlier days, when access to computing 
facilities was not easily available researchers 
used the method of transformations to estimate 
the parameters of non-linear models which are 
intrinsically linear. For intrinsically non-linear 
models, graphical methods were used. The 
parameters were estimated in two stages. At the 
first stage, one parameter was estimated 
graphically and using this estimate, method of 
transformation was used to estimate the 
remaining parameters at the second stage. For the 
models which cannot be made linear in 
parameters by any transformation, some 
ingenious methods were also developed by 
researchers earlier for specific models. For the 

logistic growth model tatt be
ky 


 1

, Nair 

(1954) discussed the application of various 
methods developed by Hotelling, Fisher, Yule, 
Rhodes and Hartley for estimating the parameters 
in detail. Later on, Cornell (1962) and Shah 
(1973) proposed methods based on partial sums 
for estimating the parameters of another such 
model given by t

tt BeAetC   )(  where 
C(t) is the concentration of a drug the blood 
stream at time t after its administration to humans 
or animals. Fresen and Juritz (1986) proposed a 
method of obtaining initial estimates of the 
parameters of the above model using the 
numerical integration technique. All these 
methods require that the observations are equally 
spaced. These methods are used in specific 
models but no method is available which could 
be used for a large class of non-linear regression 
models. 

Nowadays, with the emergence of high speed 
computers and the availability of various 
optimization algorithms, use of computer 
software for minimizing )(SSE or )(WSSE has 
become popular. With the least squares estimates 
obtained using software, researchers have 
realized that estimates obtained by transforming 
the model or by using graphical methods may be 
extremely poor. Even the ingenious methods 
mentioned above have been found to be far from 

satisfactory since they either underestimated or 
overestimated the parameters. In view of this, 
Wagner and Metzler (1967) asserted that such 
estimates could at best be used as initial seed 
values in optimization algorithms. 

In the case of non-linear regression, the 
surface of objective function (SSE  ( )~  is quite 
often very rough and is full of spikes and troughs. 
This poses many problems. If initial seed values 
are poor then the algorithm may converge to a 
local minima or we may need a lot of iterations 
and computing time for convergence to the 
global minima. It is also possible that 
convergence may not occur at all (see Steyn and 
Van Wyk 1977). The residual sum of squares, 

2
~

1
[ ( , )]

n

t t
t

RSS y g x 


  , of fitted values for 

estimates provided by these methods may be very 
low, even then the estimates may be substantially 
different from the optimisation estimates, hence 
needing a large number of iterations for 
convergence to optimum values. For example, it 
has been noticed that the RSS of fitted values for 
estimates obtained by Cornell (1962) is quite low 
for the data in his paper but the estimates are 
quite different from the least squares estimates. 
In non-linear models, all or some parameters 
have some physical interpretation, and in such 
cases poor estimates may give misleading 
interpretations. In view of these considerations, it 
is desirable to develop a general methodology to 
find good initial estimates for optimization 
algorithms. Moreover, we also need to have 
several sets of good initial estimates to ensure a 
global minimum of )(SSE . 

In this paper, we have proposed various 
methods for obtaining efficient initial estimates. 
In section 2, we have developed several methods 
based on finite differences for the models which 
could be written in the asymptotic regression 
form (see, Stevens 1951) by performing suitable 
transformations. In Section 3, we have discussed 
the applications of the proposed methods using 
four sets of published data. 
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2. ESTIMATION BASED ON FINITE 

DIFFERENCES 
We shall first discuss the procedure to obtain 

initial estimates of the parameters of the models 
which belong to the asymptotic regression 
category as discussed in Steven (1951). In an 
asymptotic regression model, the stimulus-
response relationship could be written as, 

t
x

t
ty    (2.1) 

where 0 <   < 1. Note that ty  as tx . 
Many important non-linear models could be put 
in this form. Some of the important examples are 
as follows. 

2.1 Mitscherlish Model  
This model describes the relationship 

between fertilizer dose levels and crop yields as 
follows, 

t
bxc

t
tAy   }101{ )(   (2.2) 

where c determines the efficiency of the 
fertilizer, b indicates soil content in the fertilizer 
and A is the maximum attainable yield. This 
model could be put in the form (2.1) by taking   
= A,   = bcA  10 and c10 . 

2.2 Logistic Growth Model 
This model is given by 

taxt tbe
ky 


 1

  (2.3) 

The variable transformation 
t

t y
z 1
 and 

parameter transformations 
k
b

 , ae  

transform the model (2.3) in asymptotic 
regression form. 

2.3 Gompertz Model 
This growth model is given by, 

t
cx

t
tbeay   }exp{   (2.4) 

The transformations )(log tet yz  , )(log ae , 
b and ce enable us to write (2.4) in the 

asymptotic form. 

 

2.4 One Compartment Drug Concentration 
Model 
This model is given by 

t
tetC    )(   (2.5) 

where, C(t) is the concentration of drug in blood 
stream of a human subject or animal at time t. 
Here v =  and   e  we can transform (2.5) to 
the form (2.1). 

2.5 Proposed Methods  
There could be two approaches to estimate 

the parameters of model (2.1). In the first, we 
estimate   graphically. We first plot y against x 
and take the asymptotic value of y as ^ . Then, 
we use the logarithmic transformation for 

^y  x  and estimate   and   by the 
method of least squares. In the second approach 
we first estimate   and then estimate   and   

by regressing y on 
^

( )x . If ^  falls outside the 
interval (0; 1), then it is a warning against an 
attempt to fit an asymptotic regression function. 
In this paper, we have used the second approach 
to develop the estimates. The reason for our 
choice is guided by the findings of Stevens 
(1951). 

Stevens proposed an efficient method for 
estimating  ,   and   using the least squares 
method. His method is essentially Fisher’s 
general iterative procedure which needs initial 
estimates of the parameters and the estimated 
information matrix. Stevens showed that the 
information matrix which is found by 
differentiating the normal equations of model 
(2.1) with respect to  ,   and   and replacing 
the parameters by their estimates and y by its 
expected value, turns out to be a function of ^  = 
r only. Therefore, Stevens’ method requires a 
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reasonably accurate initial estimate of  . If the 
precise estimate of   is obtained at the first 
stage, better estimates of   and   would be 
obtained at the second stage. Stevens provided 
tables for calculating the elements of information  
matrix. In many experiments, most useful levels 
x are rather low, so he provided tables only for n 
= 5; 6 and 7. Gomes (1953) enlarged the set of 
tables by providing a table for n = 4 also. 
Realizing the necessity of an efficient initial 
estimate of   for the iterative procedure, 
Patterson (1958) proposed quadratic estimates of 
  for n = 4; 5; 6; and 7 which are, in fact, ratios 
of two contrasts in yx’s. Since the methods 
provided by Stevens and Patterson are 
complicated and are available only for small 
values of n, we have developed simple methods 
for which there is no limitation on n. 

2.1.1 Method 1 
For equally spaced observations the model 

(2.1) can be written by a simple change of origin 
and scale of the regressor as 

t
x

xy      (2.6) 

where x = 1,…,n. Let yx be a function of an 
equally spaced design variable x. Then the first 
finite difference is defined as xxx yyy  1 , x = 
1, 2,.., n-1, where   is called the forward 
difference operator. yx represents the 
increment. For example, if we are interested in 
studying the growth of a plant, and xy and 

1xy are its heights at two equally spaced time 

points, then yx represents the increase in height 
which occurred during the period (x, x + 1). 
Ignoring x , we have 

x
xxx yyy  )1(1    (2.7) 

Similarly, 
1

1 )1( 
  x

xy    (2.8) 

Moreover, 

2 21 2 1
2( 1)

y y y y y yx x xx x x
x 

        

 
 (2.9) 

From (2.7), we obtain 











2

1

2

1
)1(

n

x

x
n

x
xy   (2.10) 

and from (2.9), we have 











2

1

2
2

1

2 )1(
n

x

x
n

x
xy     (2.11) 

Therefore, (2.10) and (2.11) yield, 
2

2

^ 1
1 2

1

1

n

x
x
n

x
x

y

y










 






  (2.12) 

2.1.2 Method 2 
Let the backward difference operator   be 

defined as 

xxx yyy  1    (2.13) 

Ignoring the error term in (2.6), we have 

)11(1   
 x

xxx yyy   

Similarly, 

2
12

2 )11(2   
 x

xxxx yyyy   

Now, we can easily obtain 





n

x

x
n

x
xy

33
)11( 


    (2.14)  

and 





n

x

x
n

x
xy

3

2

3

2 )11( 


   (2.15) 

From (2.14) ad (2.15), we obtain 
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1
2

^ 3
2

3

1

n

x
x

n

x
x

y

y








 
 

  
  
 




 (2.16) 

Now, we take the average of ^
2  and ^

1  to 
get the pooled estimate 

^ ^
^ 1 2

2p
  

  

2.1.3 Method 3  
Squaring (2.7) on both sides and summing 

over x, we have 











2

1

2
2

1
)1(
22

)(
2 n

x

x
n

x
xy     (2.17) 

Similarly, from (2.9) we obtain 











2

1

242
2

1

22 )1()(
n

x

x
n

x
xy   (2.18) 

From (2.17) and (2.18), we get 

c = 















2

1

2

2

1

22

)(

)(
n

x
x

n

x
x

y

y
= )1(

2
  

or   = 1 c . But 0 <   < 1, therefore 

^ = 1 - c  (2.19) 

2.1.4 Method 4: Method of Partial Sums 
This method is useful when we have a large 

number of observations. We divide the 
observations into three equal parts. Let n = 3r. If 
the need arises, we drop one or two observations 
for the purpose of obtaining initial estimates, but 
all observations are utilized at the optimization 
stage. 

Let 



r

i
iys

1
1 , 




r

ri
iys

2

1
2 and 




r

ri
iys

3

12
3  

We can assume ’ix s  to take values 1,2,…,n 
as they are equally spaced and we can use a 
suitable transformation of origin and scale. We 
can easily check that 

 
 


r

i

r

i

ii
r

i
i rys

1 11
1 )(   

Similarly, 





r

i

ir
r

i
i rys

11
2   

and 





r

i

irrs
1

2
3 )   

Now, 





r

i

ir
r

i

ir
r

i

iss
111

21 )1(    (2.20) 

Similarly, 





r

i

irrss
1

32 )1(    (2.21) 

Now, from (2.20) and (2.21), we have 

r

ss
ss 




21

32   

or )(loglog
21

32

ss
ssr e 


  

Thus, we get 

^ 2 3

1 2

1log( log )e
s santi

r s s






 (2.22) 

2.1.5 Method 5  

We can easily see that ^ 1x
x

x

y
y

 



, x = 

1,2,…,n-2. Thus we will have n - 2 estimates of 
 . 

We take the geometric mean of these 
estimates as the final estimate of  . That is, 

1
^ 2

2

1
( )n

n
xx

 




   (2.23) 
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2.1.6 Method 6  

From (2.7) and (2.8), we have 

 









2

1

2

1
)1()(

n

i

n

x

x
xy   

 







 

2

1

2

1
1 )1()(

n

i

n

x

x
xy   

From these equations we obtain 
2

1
^ 1

2

1

n

x
i
n

x
i

y

y


















  (2.24)  

3. APPLICATIONS AND DISCUSSION 
Before illustrating the applications of the 

proposed methods it is worthwhile to highlight 
some features of non-linear regression. In this 
case, the ideal way to estimate the parameters by 
the least squares method is to minimize the 
objective function )(SSE  or )(wSSE  directly 
by applying non-linear optimization algorithms. 
These algorithms are iterative in nature and 
require good initial estimates of the parameters as 
seed values for convergence to the global 
minimum of the objective function. Moreover, to 
ensure a global minimum, we should also try 
several sets of initial estimates and see that the 
convergence occurs at the same values. These 
values are, in fact, the least squares estimates of 
the parameters.  

Moreover, the exact distributional properties 
of the least squares estimates in the case of non-
linear regression are not available in general. The 
estimates are biased. However, under certain 
regularity conditions, the estimates have been 
shown to be consistent with the finite asymptotic 
variances. For details one may refer to Chapter 5 
of Seber and Wild (1989). The calculations for 
the estimates of asymptotic standard errors of the 
estimates are explained well in Ratkowsky (1983, 
pp. 15-17). 

Another important aspect is concerned with 
the transformation of the model in order to 

facilitate the estimation of the parameters using 
transformed data. This practice has been in use 
for a long time. But as discussed earlier, 
estimates thus obtained are not the true least 
squares estimates but could be used as good 
initial estimates in the optimisation algorithms. 
The effect of the transformations on the 
parameter estimates for some commonly used 
non-linear regression models is explained in 
detail by Ratkowsky (1983, pp. 63-65). The 
findings assert that such estimates obtained using 
transformations provide good initial estimates.  

Lastly, in order to compare the performance 
of various methods of finding initial estimates 
and to compare the performance of individual 
methods with that of a non-linear optimisation 
method, we could use several criteria. In  
addition to RSS, mean squared error  
given by 

n
RSSMSE  , number of iterations and 

computing time, one could also use the mean 
absolute percent error (MAPE), which is given by 

^

1

1 n
t t

i t

y y
MAPE

n y


   

where ^
ty  is the predicted value of ty  and n is the 

number of pairs in the data set. This measure 
indicates the predictive power of the method. 
After the convergence, we shall get final least 
squares estimates. The estimates of their standard 
errors can be calculated as mentioned in 
Ratkowsky (1983). For choosing the method of 
finding the initial estimates, the above criteria are 
good enough and standard errors of individual 
initial estimates have little practical significance. 

To illustrate the application of the methods 
discussed in section 2, we have considered the 
data sets given in Stevens (1951) and Gomes 
(1953). 

3.1 Data Set 1: Stevens (1951) 
A thermometer, lowered into a refrigerated 

hold, gave the following six consecutive readings 
(°F) at half minute intervals. The data is 
displayed in the following table. 
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Time 0 1 2 3 4 5 

Temperature Readings (°F)  57.7 45.7 38.7 35.3 33.1 32.2 

3.2 Data set 2: Gomes (1953) 

The mean yield of potatoes per plot of th
65
1  

of an acre in an experiment with 5 levels (0, 40, 
80, 120 and 160 pounds per acre) of super 
phosphate is given in the following table. 
Fertilizer Level (x)  0 1 2 3 4 

Yield (y)  229.1 231.8 254.2 250.6 249.6 

For calculation of ^  using the proposed 
methods, we have written codes in R 3.2.2. and 
used the ‘nls’ package in R for obtaining the least 
squares estimates. Codes for calculating the 
predicted values, RSS, MSE and MAPE have 
also been written in R. 

The initial estimates of parameters, RSS, 
MSE, MAPE, number of iterations needed for 
convergence to the values and computing time 
for Stevens’ data and Gomes’ data are given in 
Tables 1 and 2 respectively. The estimates 
obtained by the proposed methods are quite close 
to optimum least squares estimates and are 
simple to calculate. Moreover, in the proposed 
methods, there is no restriction on n.  
Table 1. Parameter Estimates, RSS, MSE, MAPE (%), Numbers 

of Iterations (I) and Computing Time in Seconds (T) for the 
Different Methods for Stevens' Data 

Method α̂  β̂  ρ̂  RSS MSE MAPE (%) I T 

1 30.6891 26.8432 0.5533 0.0982 0.0164 0.3009 4 13 

2 30.6891 26.8432 0.5533 0.0982 0.0164 0.3009 4 13 

3 30.4552 26.1993 0.5627 1.0727 0.1788 0.6809 4 14 

4 30.8665 26.7305 0.5458 0.1141 0.0190 0.3040 4 14 

5 30.6517 26.5507 0.5534 0.2743 0.0457 0.4308 5 18 

6 30.6891 26.8432 0.5534 0.0984 0.0164 0.3003 4 13 

Patterson 30.6626 26.8601 0.5544 0.1003 0.0167 0.3004 5 15 

Stevens 30.723 26.8210 0.5519 0.0973 0.0162 0.3013 3 8 

NLS 30.7239 

(0.2310) 

26.8211 

(0.2577) 

0.5518 

(0.0085) 

0.0973 

 

0.0161 

 

0.3011 

 

- 

 

- 

 

Figures within parentheses represent the standard errors of 
the estimates.  

Table 2. Parameter Estimates, RSS, MSE, MAPE (%), Numbers 
of Iterations (I) and Computing Time in Seconds (T) for the 

Different Methods for Gomes' Data 

Method α̂  β̂  ρ̂  RSS MSE MAPE 
(%) 

I T 

1 276.4140 46.969 0.8279 155.7696 31.5390 1.7569 26 29 
2 276.4140 46.969 0.8279 155.7696 31.5390 1.7569 26 29 
3 252.0330 25.505 0.4409 140.8875 28.1775 1.7384 17 27 
4 250.5219 24.1245 0.3571 156.7442 31.3488 1.7758 18 29 
5 269.7175 40.6684 0.7870 149.3772 29.8754 1.6936 23 30 
6 276.4141 46.9694 0.8279 155.7696 31.1539 1.7569 26 29 

Gomes 255.5510 28.3230 0.5750 131.7861 26.3572 1.7014 11 68 
NLS 255.5306 

(17.2375) 
28.3072 

(17.0840) 
0.5744 

(0.4789) 
131.7859 

 
26.3571 

 
1.7014 

 
- 
 

- 
 

Figures within parentheses represent the standard errors of 
the estimates. 

The estimates of Stevens and Gomes are 
closest to the optimum estimates because they 
have been obtained by iterative procedures 
aiming at the optimum values. But they involve 
tedious computing using tables and their use is 
limited to small sample sizes of n = 4; 5; 6 or 7. 
We still need some iterations to attain optimum 
estimates if their estimates are used as initial 
estimates in algorithms. The difference in 
number of iterations when compared with 
proposed estimates is not much. The main 
advantage of the methods proposed in this paper 
is that they are very simple to calculate. 
Moreover, they can also be used for large sample 
sizes and there is no need for any tabulated 
values. To demonstrate the application of the 
method for a moderately bigger sample sizes, we 
have considered the following data set reported 
by Ratkowasky (1983). 

Growing 
time (x) 

1 2 3 4 5 6 7 

Weight of 
onion bulbs 
plus dry tops 
(y) 

16.08 33.83 65.80 97.20 191.55 326.20 386.87 

 
x 8 9 10 11 12 13 14 15 
y 520.53 590.03 651.92 724.93 699.56 689.96 637.56 717.41 

To fit logistic model of the form 

)exp(1( t
t vx

y





   (3.1) 
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to Ratkowasky’s data, we first use the 

transformations 
t

t y
z 1
 , 


1

a , 


eb   and 

ve  in order to put (3.1) in the form (2.1). 
Therefore, 

t
t

t ebaz   , t = 1,…,n.  (3.2) 

We can write the model in this form because 
tx ’s are equally spaced. We applied the method 

of partial sums, that is, method 4 discussed 
earlier to obtain the estimate of   and then, 

regressing tz  on ^ t
 , we obtain estimates of the 

other parameters of (3.2). The estimates are 

obtained as ^  = 0.0013549, 
^
b = 0.1189280 and 

^  = 0.503567. From these estimates, we 
obtained estimates of parameters of (3.1) as ^ = 

738.0248, 
^
  = 4.7475 and ^v = 0.68803. The 

residual sum of squares of the fitted values is 
17115.16. Using these estimates are initial 
estimates in a non-linear optimization algorithm, 
we obtain the optimum estimates in 7 iterations 
as ^ = 702.871 (standard error = 13.9397), 

^
 = 

4.4426 (standard error = 0.3508) and ^v = 0.6886 
(standard error = 0.0574). The residual sum of 
squares of the fitted values is 8930.747. It is 
apparent that estimates obtained using the 
proposed method of partial sums are quite close 
to the optimum least squares estimates.  

Table 3 gives the observed values and fitted 
values for method 4 and non-linear algorithm 
estimates together with their RSS, MSE and 
MAPE values. The values predicted by method 4 
are quite close to observed values in the 
beginning but slightly over predicting towards 
the end for a few points. Fig. 1 gives the curves 
for the observed and fitted values. Thus, the 
performance of the proposed method appears to 
be quite satisfactory for obtaining the initial 
estimates. Looking at the performance of the 
various methods in different data sets we 
conclude that methods 1 to 4 could be 
recommended for obtaining good initial 
estimates. 

Table 3. Fitted values, RSS, MSE and MAPE (%) for method 4 
and non-linear algorithm estimates for ratkowsky's data  

Growing Time Observed 
Values 

Method 4 Non-linear 
Algorithm 

1 16.08 16.36 16.088 
2 33.83 31.8541 31.3317 
3 65.8 60.7863 59.7623 
4 97.2 111.8349 109.774 
5 191.55 193.5051 189.9181 
6 326.2 305.7005 297.5832 
7 386.87 431.4088 417.4393 
8 520.53 543.7892 523.2509 
9 590.03 625.7042 599.5534 
10 651.92 676.9529 646.9175 
11 724.93 706.0146 673.6363 
12 699.56 721.5828 687.9011 
13 689.96 729.669 695.2934 
14 637.56 733.8017 699.0651 
15 717.41 735.8964 700.9743 

RSS - 17115.16 8929.883 
MAPE (%) - 6.1713 4.7852 

MSE - 1141.011 595.3255 

 
Fig. 1. Plot of observed and fitted values using Method 4 and non-

linear algorithm estimates for ratkowasky’s data  
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APPENDIX 
R Codes 
Method-1 
x<-c(0,1,2,3,4,5) 

y<-c(57.5,45.7,38.7,35.3,33.1,32.2) 

n<-length(x)-2 

d1<-0;d2<-0 

for(i in 1:n){d1=d1+(y[i+1]-y[i]) 

d2=d2+(y[i+2]-2*y[i+1]+y[i])} 

ro1<-1+d2/d1 

xt<-ro1^x 

lm.result<-lm(y~xt) 

summary(lm.result) 

Codes for Non Linear Optimization Algorithm 
x<-c(0,1,2,3,4,5) 

y<-c(57.5,45.7,38.7,35.3,33.1,32.2)  

a<-30.6891;b<-26.8432;r<-0.55328 

nls.result<-
nls(y~Alpha+Beta*Ro^x,start=list(Alpha=a,Beta=b
,Ro=r),algorithm="port",trace=TRUE,control=nls.c
ontrol(maxiter = 100, tol = 1e-05, minFactor = 
1/1024,  

printEval = FALSE, warnOnly = FALSE)) 

summary(nls.result) 

Note: For logistic model withinnls we will have to 
write 

y~Alpha/(1+exp(Beta-Ro*x)) 
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R codes for Method-2 
x<-c(0,1,2,3,4,5) 

y<-c(57.5,45.7,38.7,35.3,33.1,32.2) 

n<-length(x)-2 

d1<-0;d2<-0 

for(i in 1:n){d1=d1+(y[i+1]-y[i]) 

d2=d2+(y[i+2]-2*y[i+1]+y[i])} 

ro1<-1+d2/d1 

m<-length(x) 

D1<-0;D2<-0 

for(i in 3:m){D1=D1+(y[i-1]-y[i]) 

D2=D2+(y[i-2]-2*y[i-1]+y[i])} 

ro2<- 1/(1+D2/D1) 

rop<-(ro1+ro2)/2 

xt<-rop^x 

lm.result<-lm(y~xt) 

summary(lm.result) 

R Codes for Method-3 
x<-c(0,1,2,3,4,5) 

y<-c(57.5,45.7,38.7,35.3,33.1,32.2) 

n<-length(x)-2 

d1<-0;d2<-0 

for(i in 1:n){d1=d1+(y[i+1]-y[i])^2 

d2=d2+(y[i+2]-2*y[i+1]+y[i])^2} 

c<-d2/d1 

ro<-1-sqrt(c) 

xt<-ro^x 

lm.result<-lm(y~xt) 

summary(lm.result) 

R Codes for Method-4 
r<-5   

x11<-c(16.08,33.83,65.8,97.2,191.55) 

x22<-c(326.2,386.87,520.53,590.03,651.92) 

x33<-c(724.93,699.56,689.96,637.56,717.41) 

x1<-1/x11;x2<-1/x22;x3<-1/x33 

x<-c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) 

y<-c(x1,x2,x3) 

s1<-sum(x1);s2<-sum(x2);s3<-sum(x3) 

y1<-s1-s2;y2<-s2-s3  

z<-y2/y1  

w<-log(z) 

u<-w/r 

ro<-exp(u) 

xt<-ro^x 

lm.result<-lm(y~xt) 

summary(lm.result) 

R Codes for calculating predicted  
values, RSS, MSE and MAPE 
x<-c(0,1,2,3,4,5) 

y<-c(57.5,45.7,38.7,35.3,33.1,32.2) 

a0<-30.6891;b0<-26.8432;r0<-0.5533 

yp<-function(x,a,b,r){ 

z<-a+b*r^x 

return(z) 

} 

ypred<-yp(x,a0,b0,r0) 

w1<-y-ypred 

w2<-w1^2 

RSS<-sum(w2) 

MSE<-RSS/length(x) 

w<-abs(w1)/y 

u<-sum(w)/length(x) 

MAPE<-u*100 
Note: For logistic model within function we will 
have to write 

 z<-a/(1+exp(b-r*x)) 

 


